(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

f(n__f(n__a)) → f(n__g(n__f(n__a)))
f(X) → n__f(X)
an__a
g(X) → n__g(X)
activate(n__f(X)) → f(X)
activate(n__a) → a
activate(n__g(X)) → g(activate(X))
activate(X) → X

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
activate(n__g(X)) →+ g(activate(X))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X / n__g(X)].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

f(n__f(n__a)) → f(n__g(n__f(n__a)))
f(X) → n__f(X)
an__a
g(X) → n__g(X)
activate(n__f(X)) → f(X)
activate(n__a) → a
activate(n__g(X)) → g(activate(X))
activate(X) → X

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
f(n__f(n__a)) → f(n__g(n__f(n__a)))
f(X) → n__f(X)
an__a
g(X) → n__g(X)
activate(n__f(X)) → f(X)
activate(n__a) → a
activate(n__g(X)) → g(activate(X))
activate(X) → X

Types:
f :: n__a:n__f:n__g → n__a:n__f:n__g
n__f :: n__a:n__f:n__g → n__a:n__f:n__g
n__a :: n__a:n__f:n__g
n__g :: n__a:n__f:n__g → n__a:n__f:n__g
a :: n__a:n__f:n__g
g :: n__a:n__f:n__g → n__a:n__f:n__g
activate :: n__a:n__f:n__g → n__a:n__f:n__g
hole_n__a:n__f:n__g1_0 :: n__a:n__f:n__g
gen_n__a:n__f:n__g2_0 :: Nat → n__a:n__f:n__g

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
f, activate

They will be analysed ascendingly in the following order:
f < activate

(8) Obligation:

TRS:
Rules:
f(n__f(n__a)) → f(n__g(n__f(n__a)))
f(X) → n__f(X)
an__a
g(X) → n__g(X)
activate(n__f(X)) → f(X)
activate(n__a) → a
activate(n__g(X)) → g(activate(X))
activate(X) → X

Types:
f :: n__a:n__f:n__g → n__a:n__f:n__g
n__f :: n__a:n__f:n__g → n__a:n__f:n__g
n__a :: n__a:n__f:n__g
n__g :: n__a:n__f:n__g → n__a:n__f:n__g
a :: n__a:n__f:n__g
g :: n__a:n__f:n__g → n__a:n__f:n__g
activate :: n__a:n__f:n__g → n__a:n__f:n__g
hole_n__a:n__f:n__g1_0 :: n__a:n__f:n__g
gen_n__a:n__f:n__g2_0 :: Nat → n__a:n__f:n__g

Generator Equations:
gen_n__a:n__f:n__g2_0(0) ⇔ n__a
gen_n__a:n__f:n__g2_0(+(x, 1)) ⇔ n__f(gen_n__a:n__f:n__g2_0(x))

The following defined symbols remain to be analysed:
f, activate

They will be analysed ascendingly in the following order:
f < activate

(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol f.

(10) Obligation:

TRS:
Rules:
f(n__f(n__a)) → f(n__g(n__f(n__a)))
f(X) → n__f(X)
an__a
g(X) → n__g(X)
activate(n__f(X)) → f(X)
activate(n__a) → a
activate(n__g(X)) → g(activate(X))
activate(X) → X

Types:
f :: n__a:n__f:n__g → n__a:n__f:n__g
n__f :: n__a:n__f:n__g → n__a:n__f:n__g
n__a :: n__a:n__f:n__g
n__g :: n__a:n__f:n__g → n__a:n__f:n__g
a :: n__a:n__f:n__g
g :: n__a:n__f:n__g → n__a:n__f:n__g
activate :: n__a:n__f:n__g → n__a:n__f:n__g
hole_n__a:n__f:n__g1_0 :: n__a:n__f:n__g
gen_n__a:n__f:n__g2_0 :: Nat → n__a:n__f:n__g

Generator Equations:
gen_n__a:n__f:n__g2_0(0) ⇔ n__a
gen_n__a:n__f:n__g2_0(+(x, 1)) ⇔ n__f(gen_n__a:n__f:n__g2_0(x))

The following defined symbols remain to be analysed:
activate

(11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol activate.

(12) Obligation:

TRS:
Rules:
f(n__f(n__a)) → f(n__g(n__f(n__a)))
f(X) → n__f(X)
an__a
g(X) → n__g(X)
activate(n__f(X)) → f(X)
activate(n__a) → a
activate(n__g(X)) → g(activate(X))
activate(X) → X

Types:
f :: n__a:n__f:n__g → n__a:n__f:n__g
n__f :: n__a:n__f:n__g → n__a:n__f:n__g
n__a :: n__a:n__f:n__g
n__g :: n__a:n__f:n__g → n__a:n__f:n__g
a :: n__a:n__f:n__g
g :: n__a:n__f:n__g → n__a:n__f:n__g
activate :: n__a:n__f:n__g → n__a:n__f:n__g
hole_n__a:n__f:n__g1_0 :: n__a:n__f:n__g
gen_n__a:n__f:n__g2_0 :: Nat → n__a:n__f:n__g

Generator Equations:
gen_n__a:n__f:n__g2_0(0) ⇔ n__a
gen_n__a:n__f:n__g2_0(+(x, 1)) ⇔ n__f(gen_n__a:n__f:n__g2_0(x))

No more defined symbols left to analyse.